* Analysis of Russian Casualties in Ukraine on Tue May 09 11:27:42 2023
  - input data directory: ./data
  - results directory:    ./results
  - transcript to:        ./results/ukr-rus-casualties-transcript.txt

Archival of script and data:
----------------------------

* Archived analysis script(s) to ./results:
  - ./data/russian-casualties-in-ukraine.tsv
  - ./ukr-rus-casualties.r

Loading and QC of data:
-----------------------

* Loading and QCing data from spreadsheet
  - Input file: ./data/russian-casualties-in-ukraine.tsv
  - Got a 107-row dataframe of 15 columns: 
    DayNum, Date, Soldiers, Tanks, ArmoredCombatVehicles, Artillery, MultipleLaunchRocketSystems, AirDefenceSystems, MilitaryJets, Helicopters, Drones, CruiseMissiles, WarshipsAndBoats, VehiclesAndFuelTanks, SpecialEquipment
  - 106 rows had complete data
  - Checking column types:
    o DayNum and Date have appropriate sequence values
    o All other columns are nondecreasing positive integers

Analysis of data:
-----------------

* Summarizing argument of uselessness of WarshipsAndBoats to ./results/warshipsAndBoats-useless.png.

* Range of correlations:
[1] 0.8243576 1.0000000

* Doing multivariate correlation chart to ./results/correlation-chart.png

* Biclustering the correlation matrix to ./results/bicluster.png
* Analyzing CruiseMissiles vs Helicopters
  - Regression plot to ./results/regress-CruiseMissiles-on-Helicopters.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
    Min      1Q  Median      3Q     Max 
-44.116 -15.974   7.618  16.884  29.659 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -2708.670    135.314  -20.02   <2e-16 ***
x              12.408      0.468   26.51   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 18.55 on 104 degrees of freedom
Multiple R-squared:  0.8711,	Adjusted R-squared:  0.8699 
F-statistic:   703 on 1 and 104 DF,  p-value: < 2.2e-16



* Analyzing CruiseMissiles vs MilitaryJets
  - Regression plot to ./results/regress-CruiseMissiles-on-MilitaryJets.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
    Min      1Q  Median      3Q     Max 
-44.603 -13.081  -1.578  11.419  37.903 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -1687.8833    78.3979  -21.53   <2e-16 ***
x               8.4982     0.2595   32.74   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 15.36 on 104 degrees of freedom
Multiple R-squared:  0.9116,	Adjusted R-squared:  0.9107 
F-statistic:  1072 on 1 and 104 DF,  p-value: < 2.2e-16



* Analyzing Helicopters vs MilitaryJets
  - Regression plot to ./results/regress-Helicopters-on-MilitaryJets.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
     Min       1Q   Median       3Q      Max 
-2.28580 -0.71821 -0.02689  0.74799  1.47950 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  91.4910     4.1984   21.79   <2e-16 ***
x             0.6543     0.0139   47.08   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8227 on 104 degrees of freedom
Multiple R-squared:  0.9552,	Adjusted R-squared:  0.9548 
F-statistic:  2216 on 1 and 104 DF,  p-value: < 2.2e-16



* Analyzing CruiseMissiles vs DayNum
  - Regression plot to ./results/regress-CruiseMissiles-on-DayNum.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
    Min      1Q  Median      3Q     Max 
-57.574 -17.184   2.652  20.324  36.538 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 799.14543    4.56253  175.15   <2e-16 ***
x             1.48575    0.07388   20.11   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 23.37 on 104 degrees of freedom
Multiple R-squared:  0.7955,	Adjusted R-squared:  0.7935 
F-statistic: 404.5 on 1 and 104 DF,  p-value: < 2.2e-16



* Analyzing MilitaryJets vs DayNum
  - Regression plot to ./results/regress-MilitaryJets-on-DayNum.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
    Min      1Q  Median      3Q     Max 
-5.8375 -1.0732  0.3165  1.2093  2.9737 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 2.925e+02  3.498e-01  836.04   <2e-16 ***
x           1.780e-01  5.665e-03   31.43   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.792 on 104 degrees of freedom
Multiple R-squared:  0.9047,	Adjusted R-squared:  0.9038 
F-statistic: 987.6 on 1 and 104 DF,  p-value: < 2.2e-16



* Analyzing Helicopters vs DayNum
  - Regression plot to ./results/regress-Helicopters-on-DayNum.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
    Min      1Q  Median      3Q     Max 
-5.8994 -0.2517  0.1790  0.5796  1.4019 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 2.827e+02  2.085e-01 1355.53   <2e-16 ***
x           1.205e-01  3.376e-03   35.68   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.068 on 104 degrees of freedom
Multiple R-squared:  0.9245,	Adjusted R-squared:  0.9238 
F-statistic:  1273 on 1 and 104 DF,  p-value: < 2.2e-16



* Analyzing Soldiers vs DayNum
  - Regression plot to ./results/regress-Soldiers-on-DayNum.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
    Min      1Q  Median      3Q     Max 
-3284.2 -1291.6   100.2  1027.9  2976.4 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 1.220e+05  3.149e+02   387.5   <2e-16 ***
x           7.123e+02  5.099e+00   139.7   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1613 on 104 degrees of freedom
Multiple R-squared:  0.9947,	Adjusted R-squared:  0.9946 
F-statistic: 1.951e+04 on 1 and 104 DF,  p-value: < 2.2e-16



* Analyzing Tanks vs DayNum
  - Regression plot to ./results/regress-Tanks-on-DayNum.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
    Min      1Q  Median      3Q     Max 
-59.279 -19.522  -3.377  18.233  60.240 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 3.160e+03  5.739e+00  550.55   <2e-16 ***
x           5.863e+00  9.292e-02   63.09   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 29.39 on 104 degrees of freedom
Multiple R-squared:  0.9745,	Adjusted R-squared:  0.9743 
F-statistic:  3981 on 1 and 104 DF,  p-value: < 2.2e-16



* Analyzing ArmoredCombatVehicles vs DayNum
  - Regression plot to ./results/regress-ArmoredCombatVehicles-on-DayNum.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
    Min      1Q  Median      3Q     Max 
-47.380 -14.908  -3.751  11.973  59.017 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 6.285e+03  4.676e+00  1344.1   <2e-16 ***
x           9.428e+00  7.571e-02   124.5   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 23.95 on 104 degrees of freedom
Multiple R-squared:  0.9933,	Adjusted R-squared:  0.9933 
F-statistic: 1.551e+04 on 1 and 104 DF,  p-value: < 2.2e-16



* Analyzing Artillery vs DayNum
  - Regression plot to ./results/regress-Artillery-on-DayNum.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
    Min      1Q  Median      3Q     Max 
-33.997 -11.369   0.171   7.790  40.482 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 2.099e+03  3.132e+00   670.3   <2e-16 ***
x           8.208e+00  5.071e-02   161.8   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 16.04 on 104 degrees of freedom
Multiple R-squared:  0.996,	Adjusted R-squared:  0.996 
F-statistic: 2.619e+04 on 1 and 104 DF,  p-value: < 2.2e-16



* Analyzing MultipleLaunchRocketSystems vs DayNum
  - Regression plot to ./results/regress-MultipleLaunchRocketSystems-on-DayNum.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
    Min      1Q  Median      3Q     Max 
-9.0401 -4.3569  0.0385  2.8477 10.9564 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 442.55002    0.98453  449.50   <2e-16 ***
x             1.08324    0.01594   67.95   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.042 on 104 degrees of freedom
Multiple R-squared:  0.978,	Adjusted R-squared:  0.9778 
F-statistic:  4617 on 1 and 104 DF,  p-value: < 2.2e-16



* Analyzing AirDefenceSystems vs DayNum
  - Regression plot to ./results/regress-AirDefenceSystems-on-DayNum.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
    Min      1Q  Median      3Q     Max 
-6.2533 -2.8822 -0.0945  2.0766  8.0753 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 216.26845    0.63709  339.46   <2e-16 ***
x             0.83317    0.01032   80.77   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.263 on 104 degrees of freedom
Multiple R-squared:  0.9843,	Adjusted R-squared:  0.9842 
F-statistic:  6523 on 1 and 104 DF,  p-value: < 2.2e-16



* Analyzing Drones vs DayNum
  - Regression plot to ./results/regress-Drones-on-DayNum.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
    Min      1Q  Median      3Q     Max 
-46.819 -24.051  -8.487  21.336 120.307 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 1.848e+03  6.088e+00   303.6   <2e-16 ***
x           6.033e+00  9.858e-02    61.2   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 31.18 on 104 degrees of freedom
Multiple R-squared:  0.973,	Adjusted R-squared:  0.9727 
F-statistic:  3746 on 1 and 104 DF,  p-value: < 2.2e-16



* Analyzing VehiclesAndFuelTanks vs DayNum
  - Regression plot to ./results/regress-VehiclesAndFuelTanks-on-DayNum.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
   Min     1Q Median     3Q    Max 
-28.69 -18.27 -11.28  19.52  84.12 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 4.933e+03  4.902e+00  1006.3   <2e-16 ***
x           8.822e+00  7.937e-02   111.1   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 25.1 on 104 degrees of freedom
Multiple R-squared:  0.9917,	Adjusted R-squared:  0.9916 
F-statistic: 1.235e+04 on 1 and 104 DF,  p-value: < 2.2e-16



* Analyzing SpecialEquipment vs DayNum
  - Regression plot to ./results/regress-SpecialEquipment-on-DayNum.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
     Min       1Q   Median       3Q      Max 
-19.0919  -5.3853   0.9368   5.8729  21.5022 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 172.1394     1.8961   90.78   <2e-16 ***
x             1.7791     0.0307   57.95   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 9.711 on 104 degrees of freedom
Multiple R-squared:   0.97,	Adjusted R-squared:  0.9697 
F-statistic:  3358 on 1 and 104 DF,  p-value: < 2.2e-16



Call:
lm(formula = DayNum ~ Soldiers, data = ukrRusCasualties)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.1065 -1.4239 -0.2101  1.8040  4.8695 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -1.701e+02  1.617e+00  -105.2   <2e-16 ***
Soldiers     1.396e-03  9.998e-06   139.7   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.258 on 104 degrees of freedom
Multiple R-squared:  0.9947,	Adjusted R-squared:  0.9946 
F-statistic: 1.951e+04 on 1 and 104 DF,  p-value: < 2.2e-16

         fit        lwr        upr
1 2023-05-11 2023-05-06 2023-05-15


* Analysis of Russian Casualties in Ukraine completed Tue May 09 11:27:46 2023 (4.0 sec elapsed).