* Analysis of Russian Casualties in Ukraine on Sun Apr 16 22:20:11 2023
  - input data directory: ./data
  - results directory:    ./results
  - transcript to:        ./results/ukr-rus-casualties-transcript.txt

Archival of script and data:
----------------------------

* Archived analysis script(s) to ./results:
  - ./data/russian-casualties-in-ukraine.tsv
  - ./ukr-rus-casualties.r

Loading and QC of data:
-----------------------

* Loading and QCing data from spreadsheet
  - Input file: ./data/russian-casualties-in-ukraine.tsv
  - Got a 85-row dataframe of 15 columns: 
    DayNum, Date, Soldiers, Tanks, ArmoredCombatVehicles, Artillery, MultipleLaunchRocketSystems, AirDefenceSystems, MilitaryJets, Helicopters, Drones, CruiseMissiles, WarshipsAndBoats, VehiclesAndFuelTanks, SpecialEquipment
  - Checking column types:
    o DayNum and Date have appropriate sequence values
    o All other columns are nondecreasing positive integers

Analysis of data:
-----------------

* Summarizing argument of uselessness of WarshipsAndBoats to ./results/warshipsAndBoats-useless.png.

* Range of correlations:
[1] 0.8283804 1.0000000

* Doing multivariate correlation chart to ./results/correlation-chart.png

* Biclustering the correlation matrix to ./results/bicluster.png
* Analyzing CruiseMissiles vs Helicopters
  - Regression plot to ./results/regress-CruiseMissiles-on-Helicopters.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
    Min      1Q  Median      3Q     Max 
-44.303 -16.966   2.356  16.697  31.712 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -3068.8195   162.3163  -18.91   <2e-16 ***
x              13.6683     0.5636   24.25   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 17.93 on 83 degrees of freedom
Multiple R-squared:  0.8763,	Adjusted R-squared:  0.8748 
F-statistic: 588.1 on 1 and 83 DF,  p-value: < 2.2e-16



* Analyzing CruiseMissiles vs MilitaryJets
  - Regression plot to ./results/regress-CruiseMissiles-on-MilitaryJets.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
    Min      1Q  Median      3Q     Max 
-43.349 -13.009   0.538   9.323  38.319 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -1770.6376    87.2702  -20.29   <2e-16 ***
x               8.7774     0.2903   30.23   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 14.71 on 83 degrees of freedom
Multiple R-squared:  0.9168,	Adjusted R-squared:  0.9157 
F-statistic:   914 on 1 and 83 DF,  p-value: < 2.2e-16



* Analyzing Helicopters vs MilitaryJets
  - Regression plot to ./results/regress-Helicopters-on-MilitaryJets.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
     Min       1Q   Median       3Q      Max 
-2.68392 -0.48224  0.06818  0.57973  1.41692 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 103.9266     4.5685   22.75   <2e-16 ***
x             0.6124     0.0152   40.29   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.7701 on 83 degrees of freedom
Multiple R-squared:  0.9514,	Adjusted R-squared:  0.9508 
F-statistic:  1624 on 1 and 83 DF,  p-value: < 2.2e-16



* Analyzing CruiseMissiles vs DayNum
  - Regression plot to ./results/regress-CruiseMissiles-on-DayNum.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
    Min      1Q  Median      3Q     Max 
-47.959 -17.419   1.979  19.315  33.307 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 787.70084    4.82321   163.3   <2e-16 ***
x             1.85155    0.09742    19.0   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 22.04 on 83 degrees of freedom
Multiple R-squared:  0.8131,	Adjusted R-squared:  0.8109 
F-statistic: 361.2 on 1 and 83 DF,  p-value: < 2.2e-16



* Analyzing MilitaryJets vs DayNum
  - Regression plot to ./results/regress-MilitaryJets-on-DayNum.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
    Min      1Q  Median      3Q     Max 
-4.6449 -0.6826  0.0343  1.0626  2.3739 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 2.912e+02  3.019e-01  964.55   <2e-16 ***
x           2.170e-01  6.098e-03   35.58   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.379 on 83 degrees of freedom
Multiple R-squared:  0.9385,	Adjusted R-squared:  0.9377 
F-statistic:  1266 on 1 and 83 DF,  p-value: < 2.2e-16



* Analyzing Helicopters vs DayNum
  - Regression plot to ./results/regress-Helicopters-on-DayNum.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
    Min      1Q  Median      3Q     Max 
-5.4903 -0.3636  0.1502  0.6221  1.2983 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 2.822e+02  2.351e-01 1200.51   <2e-16 ***
x           1.338e-01  4.748e-03   28.18   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.074 on 83 degrees of freedom
Multiple R-squared:  0.9054,	Adjusted R-squared:  0.9042 
F-statistic: 794.1 on 1 and 83 DF,  p-value: < 2.2e-16



* Analyzing Soldiers vs DayNum
  - Regression plot to ./results/regress-Soldiers-on-DayNum.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
     Min       1Q   Median       3Q      Max 
-2750.35  -583.62    96.94   491.15  1708.56 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 1.207e+05  2.071e+02   582.6   <2e-16 ***
x           7.547e+02  4.184e+00   180.4   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 946.4 on 83 degrees of freedom
Multiple R-squared:  0.9975,	Adjusted R-squared:  0.9974 
F-statistic: 3.254e+04 on 1 and 83 DF,  p-value: < 2.2e-16



* Analyzing Tanks vs DayNum
  - Regression plot to ./results/regress-Tanks-on-DayNum.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
    Min      1Q  Median      3Q     Max 
-42.403  -7.603  -0.689   7.567  35.298 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 3.134e+03  3.468e+00  903.79   <2e-16 ***
x           6.652e+00  7.004e-02   94.98   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 15.84 on 83 degrees of freedom
Multiple R-squared:  0.9909,	Adjusted R-squared:  0.9908 
F-statistic:  9021 on 1 and 83 DF,  p-value: < 2.2e-16



* Analyzing ArmoredCombatVehicles vs DayNum
  - Regression plot to ./results/regress-ArmoredCombatVehicles-on-DayNum.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
    Min      1Q  Median      3Q     Max 
-32.472 -11.259  -2.563  10.376  41.271 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 6.267e+03  3.771e+00  1661.9   <2e-16 ***
x           9.985e+00  7.617e-02   131.1   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 17.23 on 83 degrees of freedom
Multiple R-squared:  0.9952,	Adjusted R-squared:  0.9951 
F-statistic: 1.719e+04 on 1 and 83 DF,  p-value: < 2.2e-16



* Analyzing Artillery vs DayNum
  - Regression plot to ./results/regress-Artillery-on-DayNum.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
    Min      1Q  Median      3Q     Max 
-33.120 -12.813   2.902  10.888  31.649 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 2.104e+03  3.346e+00   628.9   <2e-16 ***
x           8.069e+00  6.758e-02   119.4   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 15.29 on 83 degrees of freedom
Multiple R-squared:  0.9942,	Adjusted R-squared:  0.9941 
F-statistic: 1.426e+04 on 1 and 83 DF,  p-value: < 2.2e-16



* Analyzing MultipleLaunchRocketSystems vs DayNum
  - Regression plot to ./results/regress-MultipleLaunchRocketSystems-on-DayNum.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
    Min      1Q  Median      3Q     Max 
-8.0468 -3.8249 -0.0793  4.0183  7.8911 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 439.5882     0.9705  452.94   <2e-16 ***
x             1.1746     0.0196   59.92   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.434 on 83 degrees of freedom
Multiple R-squared:  0.9774,	Adjusted R-squared:  0.9771 
F-statistic:  3590 on 1 and 83 DF,  p-value: < 2.2e-16



* Analyzing AirDefenceSystems vs DayNum
  - Regression plot to ./results/regress-AirDefenceSystems-on-DayNum.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
    Min      1Q  Median      3Q     Max 
-5.9302 -2.1039  0.0189  2.2314  6.5009 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 214.7387     0.6290  341.40   <2e-16 ***
x             0.8832     0.0127   69.52   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.874 on 83 degrees of freedom
Multiple R-squared:  0.9831,	Adjusted R-squared:  0.9829 
F-statistic:  4833 on 1 and 83 DF,  p-value: < 2.2e-16



* Analyzing Drones vs DayNum
  - Regression plot to ./results/regress-Drones-on-DayNum.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
    Min      1Q  Median      3Q     Max 
-34.399 -18.701   3.148  14.054  38.544 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 1.871e+03  4.230e+00  442.31   <2e-16 ***
x           5.340e+00  8.545e-02   62.49   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 19.33 on 83 degrees of freedom
Multiple R-squared:  0.9792,	Adjusted R-squared:  0.9789 
F-statistic:  3905 on 1 and 83 DF,  p-value: < 2.2e-16



* Analyzing VehiclesAndFuelTanks vs DayNum
  - Regression plot to ./results/regress-VehiclesAndFuelTanks-on-DayNum.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
    Min      1Q  Median      3Q     Max 
-32.570  -9.145   2.269   8.905  20.147 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 4951.8126     2.6040  1901.6   <2e-16 ***
x              8.2525     0.0526   156.9   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 11.9 on 83 degrees of freedom
Multiple R-squared:  0.9966,	Adjusted R-squared:  0.9966 
F-statistic: 2.462e+04 on 1 and 83 DF,  p-value: < 2.2e-16



* Analyzing SpecialEquipment vs DayNum
  - Regression plot to ./results/regress-SpecialEquipment-on-DayNum.png.
Call:
lm(formula = y ~ x, data = data.frame(x = xs, y = ys))

Residuals:
    Min      1Q  Median      3Q     Max 
-15.918  -5.413   1.480   5.188  12.946 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 178.5395     1.7427  102.45   <2e-16 ***
x             1.5825     0.0352   44.96   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 7.963 on 83 degrees of freedom
Multiple R-squared:  0.9606,	Adjusted R-squared:  0.9601 
F-statistic:  2021 on 1 and 83 DF,  p-value: < 2.2e-16




* Analysis of Russian Casualties in Ukraine completed Sun Apr 16 22:20:15 2023 (3.6 sec elapsed).